Search Results for ""
541 - 550 of 2846 for Maximum Modulus TheoremSearch Results
![](/common/images/search/spacer.gif)
Let three equal circles with centers J_A, J_B, and J_C intersect in a single point H and intersect pairwise in the points A, B, and C. Then the circumcircle O of the ...
A point x_0 at which the derivative of a function f(x) vanishes, f^'(x_0)=0. A stationary point may be a minimum, maximum, or inflection point.
Given any triangle ABC, the signed sum of perpendicular distances from the circumcenter O to the sides (i.e., signed lengths of the pedal lines from O) is OO_A+OO_B+OO_C=R+r, ...
Every "large" even number may be written as 2n=p+m where p is a prime and m in P union P_2 is the set of primes P and semiprimes P_2.
Let H be a heptagon with seven vertices given in cyclic order inscribed in a conic. Then the Pascal lines of the seven hexagons obtained by omitting each vertex of H in turn ...
If a complex function f is analytic in a disk contained in a simply connected domain D and f can be analytically continued along every polygonal arc in D, then f can be ...
Given two functions f and g analytic in A with gamma a simple loop homotopic to a point in A, if |g(z)|<|f(z)| for all z on gamma, then f and f+g have the same number of ...
Let K subset= C be compact, let f be analytic on a neighborhood of K, and let P subset= C^*\K contain at least one point from each connected component of C^*\K. Then for any ...
There are at least two Siegel's theorems. The first states that an elliptic curve can have only a finite number of points with integer coordinates. The second states that if ...
Let G be a graph and S a subgraph of G. Let the number of odd components in G-S be denoted S^', and |S| the number of graph vertices of S. The condition |S|>=S^' for every ...
![](/common/images/search/spacer.gif)
...