Search Results for ""
881 - 890 of 13135 for MathworldSearch Results
A Hilbert basis for the vector space of square summable sequences (a_n)=a_1, a_2, ... is given by the standard basis e_i, where e_i=delta_(in), with delta_(in) the Kronecker ...
The hinge theorem says that if two triangles DeltaABC and DeltaA^'B^'C^' have congruent sides AB=A^'B^' and AC=A^'C^' and ∠A>∠A^', then BC>B^'C^'.
Let V be an inner product space and let x,y,z in V. Hlawka's inequality states that ||x+y||+||y+z||+||z+x||<=||x||+||y||+||z||+||x+y+z||, where the norm ||z|| denotes the ...
A hom-set of a category C is a set of morphisms of C.
On the class of topological spaces, a homeomorphism class is an equivalence class under the relation of being homeomorphic. For example, the open interval (-pi/2,pi/2) and ...
The homeomorphism group of a topological space X is the set of all homeomorphisms f:X->X, which forms a group by composition.
Let C denote a chain complex, a portion of which is shown below: ...->C_(n+1)->C_n->C_(n-1)->.... Let H_n(C)=kerpartial_n/Impartial_(n+1) denotes the nth homology group. Then ...
In a chain complex of modules ...->C_(i+1)->^(d_(i+1))C_i->^(d_i)C_(i-1)->..., the module B_i of i-boundaries is the image of d_(i+1). It is a submodule of C_i and is ...
A homology class in a singular homology theory is represented by a finite linear combination of geometric subobjects with zero boundary. Such a linear combination is ...
In a chain complex of modules ...->C_(i+1)->^(d_(i+1))C_i->^(d_i)C_(i-1)->... the module Z_i of i-cycles is the kernel of d_i, which is a submodule of C_i.
...
View search results from all Wolfram sites (168819 matches)

