Search Results for ""
4631 - 4640 of 13135 for MathworldSearch Results
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice endomorphism is a mapping h:L->L that preserves both meets and joins.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. A lattice isomorphism is a one-to-one and onto lattice homomorphism.
Let L=(L, ^ , v ) be a lattice, and let f,g:L->L. Then the pair (f,g) is a polarity of L if and only if f is a decreasing join-endomorphism and g is an increasing ...
Let L=(L, ^ , v ) be a lattice, and let tau subset= L^2. Then tau is a tolerance if and only if it is a reflexive and symmetric sublattice of L^2. Tolerances of lattices, ...
A Laurent polynomial with coefficients in the field F is an algebraic object that is typically expressed in the form ...+a_(-n)t^(-n)+a_(-(n-1))t^(-(n-1))+... ...
Let S be a nonempty set of real numbers that has an upper bound. Then a number c is called the least upper bound (or the supremum, denoted supS) for S iff it satisfies the ...
A nonnegative measurable function f is called Lebesgue integrable if its Lebesgue integral intfdmu is finite. An arbitrary measurable function is integrable if f^+ and f^- ...
Given a map f:S->T between sets S and T, the map g:T->S is called a left inverse to f provided that g degreesf=id_S, that is, composing f with g from the left gives the ...
The Lemoine ellipse is an inconic (that is always an ellipse) that has inconic parameters x:y:z=(2(b^2+c^2)-a^2)/(bc):(2(a^2+c^2)-b^2)/(ac): (2(a^2+b^2)-c^2)/(ab). (1) The ...
Let L denote the partition lattice of the set {1,2,...,n}. The maximum element of L is M={{1,2,...,n}} (1) and the minimum element is m={{1},{2},...,{n}}. (2) Let Z_n denote ...
...
View search results from all Wolfram sites (168819 matches)

