Search Results for ""
501 - 510 of 1609 for Lookand Say SequenceSearch Results
![](/common/images/search/spacer.gif)
Define G(a,n)=1/aint_0^infty[1-e^(aEi(-t))sum_(k=0)^(n-1)((-a)^k[Ei(-t)]^k)/(k!)]. Then the Flajolet-Odlyzko constant is defined as G(1/2,1)=0.757823011268... (OEIS A143297).
For any real alpha and beta such that beta>alpha, let p(alpha)!=0 and p(beta)!=0 be real polynomials of degree n, and v(x) denote the number of sign changes in the sequence ...
Bracewell's term for the rectangle function.
If a sequence of double points is passed as a closed curve is traversed, each double point appears once in an even place and once in an odd place.
A generating function f(x) is a formal power series f(x)=sum_(n=0)^inftya_nx^n (1) whose coefficients give the sequence {a_0,a_1,...}. The Wolfram Language command ...
Gieseking's constant is defined by G = int_0^(2pi/3)ln(2cos(1/2x))dx (1) = Cl_2(1/3pi) (2) = (3sqrt(3))/4[1-sum_(k=0)^(infty)1/((3k+2)^2)+sum_(k=1)^(infty)1/((3k+1)^2)] (3) = ...
The Goh-Schmutz constant is defined by the integrals C = int_0^infty(ln(1+t))/(e^t-1)dt (1) = int_0^inftyln[1-ln(1-e^(-t))]dt (2) = ...
The golden ratio conjugate, also called the silver ratio, is the quantity Phi = 1/phi (1) = phi-1 (2) = 2/(1+sqrt(5)) (3) = (sqrt(5)-1)/2 (4) = 0.6180339887... (5) (OEIS ...
G = int_0^infty(e^(-u))/(1+u)du (1) = -eEi(-1) (2) = 0.596347362... (3) (OEIS A073003), where Ei(x) is the exponential integral. Stieltjes showed it has the continued ...
A knot move illustrated above. Two knots cannot be distinguished using Vassiliev invariants of order <=n iff they are related by a sequence of such moves (Habiro 2000). There ...
![](/common/images/search/spacer.gif)
...