Search Results for ""
311 - 320 of 2765 for Linear Recurrence EquationSearch Results
![](/common/images/search/spacer.gif)
Using the notation of Byerly (1959, pp. 252-253), Laplace's equation can be reduced to (1) where alpha = cint_c^lambda(dlambda)/(sqrt((lambda^2-b^2)(lambda^2-c^2))) (2) = ...
The ordinary differential equation (x^py^')^'+/-x^sigmay^n=0.
In conical coordinates, Laplace's equation can be written ...
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
In conical coordinates, Laplace's equation can be written ...
Spinor fields describing particles of zero rest mass satisfy the so-called zero rest mass equations. Examples of zero rest mass particles include the neutrino (a fermion) and ...
As a part of the study of Waring's problem, it is known that every positive integer is a sum of no more than 9 positive cubes (g(3)=9), that every "sufficiently large" ...
As a consequence of Matiyasevich's refutation of Hilbert's 10th problem, it can be proved that there does not exist a general algorithm for solving a general quartic ...
The 5.1.2 fifth-order Diophantine equation A^5=B^5+C^5 (1) is a special case of Fermat's last theorem with n=5, and so has no solution. improving on the results on Lander et ...
Poisson's equation is del ^2phi=4pirho, (1) where phi is often called a potential function and rho a density function, so the differential operator in this case is L^~=del ...
![](/common/images/search/spacer.gif)
...