TOPICS
Search

Search Results for ""


1101 - 1110 of 2765 for Linear Recurrence EquationSearch Results
Let M_r be an r-rowed minor of the nth order determinant |A| associated with an n×n matrix A=a_(ij) in which the rows i_1, i_2, ..., i_r are represented with columns k_1, ...
Given a matrix A, a Jordan basis satisfies Ab_(i,1)=lambda_ib_(i,1) and Ab_(i,j)=lambda_ib_(i,j)+b_(i,j-1), and provides the means by which any complex matrix A can be ...
The Kronecker sum is the matrix sum defined by A direct sum B=A tensor I_b+I_a tensor B, (1) where A and B are square matrices of order a and b, respectively, I_n is the ...
Let S={x_1,...,x_n} be a set of n distinct positive integers. Then the matrix [S]_n having the least common multiple LCM(x_i,x_j) of x_i and x_j as its i,jth entry is called ...
A left eigenvector is defined as a row vector X_L satisfying X_LA=lambda_LX_L. In many common applications, only right eigenvectors (and not left eigenvectors) need be ...
A triangular matrix L of the form L_(ij)={a_(ij) for i>=j; 0 for i<j. (1) Written explicitly, L=[a_(11) 0 ... 0; a_(21) a_(22) ... 0; | | ... 0; a_(n1) a_(n2) ... a_(nn)]. ...
If all the eigenvalues of a real matrix A have real parts, then to an arbitrary negative definite quadratic form (x,Wx) with x=x(t) there corresponds a positive definite ...
Denote the sum of two matrices A and B (of the same dimensions) by C=A+B. The sum is defined by adding entries with the same indices c_(ij)=a_(ij)+b_(ij) over all i and j. ...
Matrix decomposition refers to the transformation of a given matrix (often assumed to be a square matrix) into a given canonical form.
The matrix direct sum of n matrices constructs a block diagonal matrix from a set of square matrices, i.e., direct sum _(i=1)^nA_i = diag(A_1,A_2,...,A_n) (1) = [A_1 ; A_2 ; ...
1 ... 108|109|110|111|112|113|114 ... 277 Previous Next

...