Search Results for ""
2671 - 2680 of 3922 for Line graphsSearch Results
Let f(z) = z+a_1+a_2z^(-1)+a_3z^(-2)+... (1) = zsum_(n=0)^(infty)a_nz^(-n) (2) = zg(1/z) (3) be a Laurent polynomial with a_0=1. Then the Faber polynomial P_m(f) in f(z) of ...
A factorion is an integer which is equal to the sum of factorials of its digits. There are exactly four such numbers: 1 = 1! (1) 2 = 2! (2) 145 = 1!+4!+5! (3) 40585 = ...
Let T_n(x) be an arbitrary trigonometric polynomial T_n(x)=1/2a_0+{sum_(k=1)^n[a_kcos(kx)+b_ksin(kx)]} (1) with real coefficients, let f be a function that is integrable over ...
The Feller-Tornier constant is the density of integers that have an even number of prime factors p_i^(a_i) with a_1>1 in their prime factorization. It is given by ...
In 1657, Fermat posed the problem of finding solutions to sigma(x^3)=y^2, and solutions to sigma(x^2)=y^3, where sigma(n) is the divisor function (Dickson 2005). The first ...
A circumconic hyperbola, which therefore passes through the orthocenter, is a rectangular hyperbola, and has center on the nine-point circle. Its circumconic parameters are ...
The sequence of six 9s which begins at the 762nd decimal place of pi, pi=3.14159...134999999_()_(six 9s)837... (Wells 1986, p. 51). The positions of the first occurrences of ...
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) n!_F. It is given by the infinite product ...
Let psi = 1+phi (1) = 1/2(3+sqrt(5)) (2) = 2.618033... (3) (OEIS A104457), where phi is the golden ratio, and alpha = lnphi (4) = 0.4812118 (5) (OEIS A002390). Define the ...
The fibonomial coefficient (sometimes also called simply the Fibonacci coefficient) is defined by [m; k]_F=(F_mF_(m-1)...F_(m-k+1))/(F_1F_2...F_k), (1) where [m; 0]_F=1 and ...
...
View search results from all Wolfram sites (28121 matches)

