Search Results for ""
231 - 240 of 1641 for Legendre Functionofthe Second KindSearch Results

A k-matrix is a kind of cube root of the identity matrix (distinct from the identity matrix) which is defined by the complex matrix k=[0 0 -i; i 0 0; 0 1 0]. It satisfies ...
Given a pair of orthologic triangles, the point where the perpendiculars from the vertices of the first to the sides of the second concur and the point where the ...
Define the nome by q=e^(-piK^'(k)/K(k))=e^(ipitau), (1) where K(k) is the complete elliptic integral of the first kind with modulus k, K^'(k)=K(sqrt(1-k^2)) is the ...
The geodesic on an oblate spheroid can be computed analytically, although the resulting expression is much more unwieldy than for a simple sphere. A spheroid with equatorial ...
The Jacobi elliptic functions are standard forms of elliptic functions. The three basic functions are denoted cn(u,k), dn(u,k), and sn(u,k), where k is known as the elliptic ...
A genetic algorithm is a class of adaptive stochastic optimization algorithms involving search and optimization. Genetic algorithms were first used by Holland (1975). The ...
An algorithm for making tables of primes. Sequentially write down the integers from 2 to the highest number n you wish to include in the table. Cross out all numbers >2 which ...
Special cases of general formulas due to Bessel. J_0(sqrt(z^2-y^2))=1/piint_0^pie^(ycostheta)cos(zsintheta)dtheta, where J_0(z) is a Bessel function of the first kind. Now, ...
The ordinary differential equation y^('')+r/zy^'=(Az^m+s/(z^2))y. (1) It has solution y=c_1I_(-nu)((2sqrt(A)z^(m/2+1))/(m+2))z^((1-r)/2) ...
For r and x real, with 0<=arg(sqrt(k^2-tau^2))<pi and 0<=argk<pi, 1/2iint_(-infty)^inftyH_0^((1))(rsqrt(k^2-tau^2))e^(itaux)dtau=(e^(iksqrt(r^2+x^2)))/(sqrt(r^2+x^2)), where ...

...