TOPICS
Search

Search Results for ""


241 - 250 of 2358 for Legendre Differential EquationSearch Results
Unlike quadratic, cubic, and quartic polynomials, the general quintic cannot be solved algebraically in terms of a finite number of additions, subtractions, multiplications, ...
In conical coordinates, Laplace's equation can be written ...
An integral equation of the form phi(x)=f(x)+lambdaint_(-infty)^inftyK(x,t)phi(t)dt (1) phi(x)=1/(sqrt(2pi))int_(-infty)^infty(F(t)e^(-ixt)dt)/(1-sqrt(2pi)lambdaK(t)). (2) ...
Using the notation of Byerly (1959, pp. 252-253), Laplace's equation can be reduced to (1) where alpha = cint_c^lambda(dlambda)/(sqrt((lambda^2-b^2)(lambda^2-c^2))) (2) = ...
A Fredholm integral equation of the second kind phi(x)=f(x)+lambdaint_a^bK(x,t)phi(t)dt (1) may be solved as follows. Take phi_0(x) = f(x) (2) phi_1(x) = ...
A Fredholm integral equation of the first kind is an integral equation of the form f(x)=int_a^bK(x,t)phi(t)dt, (1) where K(x,t) is the kernel and phi(t) is an unknown ...
The first and second Pöschl-Teller differential equations are given by y^('')-{a^2[(kappa(kappa-1))/(sin^2(ax))+(lambda(lambda-1))/(cos^2(ax))]-b^2}y=0 and ...
Spinor fields describing particles of zero rest mass satisfy the so-called zero rest mass equations. Examples of zero rest mass particles include the neutrino (a fermion) and ...
An integral equation of the form f(x)=int_a^xK(x,t)phi(t)dt, where K(x,t) is the integral kernel, f(x) is a specified function, and phi(t) is the function to be solved for.
An integral equation of the form phi(x)=f(x)+int_a^xK(x,t)phi(t)dt, where K(x,t) is the integral kernel, f(x) is a specified function, and phi(t) is the function to be solved ...
1 ... 22|23|24|25|26|27|28 ... 236 Previous Next

...