Search Results for ""
101 - 110 of 276 for Law of Sines and CosinesSearch Results
The partial differential equation u_(xt)=sinhu, which contains u_(xt) instead of u_(xx)-u_(tt) and sinhu instead to sinu, as in the sine-Gordon equation (Grauel 1985; ...
The haversine, also called the haversed sine, is a little-used entire trigonometric function defined by hav(z) = 1/2vers(z) (1) = 1/2(1-cosz) (2) = sin^2(1/2z), (3) where ...
By analogy with the log sine function, define the log cosine function by C_n=int_0^(pi/2)[ln(cosx)]^ndx. (1) The first few cases are given by C_1 = -1/2piln2 (2) C_2 = ...
The log sine function, also called the logsine function, is defined by S_n=int_0^pi[ln(sinx)]^ndx. (1) The first few cases are given by S_1 = -piln2 (2) S_2 = ...
A univariate function f(x) is said to be odd provided that f(-x)=-f(x). Geometrically, such functions are symmetric about the origin. Examples of odd functions include x, ...
"SOHCAHTOA" is a helpful mnemonic for remembering the definitions of the trigonometric functions sine, cosine, and tangent i.e., sine equals opposite over hypotenuse, cosine ...
"SOHCAHTOA" is a helpful mnemonic for remembering the definitions of the trigonometric functions sine, cosine, and tangent i.e., sine equals opposite side over hypotenuse, ...
An important theorem in plane geometry, also known as Hero's formula. Given the lengths of the sides a, b, and c and the semiperimeter s=1/2(a+b+c) (1) of a triangle, Heron's ...
A triangle center function (sometimes simply called a center function) is a nonzero function f(a,b,c) that is homogeneous f(ta,tb,tc)=t^nf(a,b,c) (1) bisymmetry in b and c, ...
In general, a tetrahedron is a polyhedron with four sides. If all faces are congruent, the tetrahedron is known as an isosceles tetrahedron. If all faces are congruent to an ...
...
View search results from all Wolfram sites (34364 matches)

