Search Results for ""
151 - 160 of 1310 for Lagrange Interpolating PolynomialSearch Results
The Zernike polynomials are a set of orthogonal polynomials that arise in the expansion of a wavefront function for optical systems with circular pupils. The odd and even ...
Adomian polynomials decompose a function u(x,t) into a sum of components u(x,t)=sum_(n=0)^inftyu_n(x,t) (1) for a nonlinear operator F as F(u(x,t))=sum_(n=0)^inftyA_n. (2) ...
The polynomials G_n(x;a,b) given by the associated Sheffer sequence with f(t)=e^(at)(e^(bt)-1), (1) where b!=0. The inverse function (and therefore generating function) ...
A polynomial that represents integers for all integer values of the variables. An integer polynomial is a special case of such a polynomial. In general, every integer ...
Let f be an integer polynomial. The f can be factored into a product of two polynomials of lower degree with rational coefficients iff it can be factored into a product of ...
A k-matching in a graph G is a set of k edges, no two of which have a vertex in common (i.e., an independent edge set of size k). Let Phi_k be the number of k-matchings of ...
A sparse polynomial square is a square of a polynomial [P(x)]^2 that has fewer terms than the original polynomial P(x). Examples include Rényi's polynomial (1) (Rényi 1947, ...
If a polynomial P(x) is divided by (x-r), then the remainder is a constant given by P(r).
A 1-variable unoriented knot polynomial Q(x). It satisfies Q_(unknot)=1 (1) and the skein relationship Q_(L_+)+Q_(L_-)=x(Q_(L_0)+Q_(L_infty)). (2) It also satisfies ...
The w-polynomials obtained by setting p(x)=3x and q(x)=-2 in the Lucas polynomial sequence. Setting f_n(1)=f_n (1) give a Fermat-Lucas number. The first few Fermat-Lucas ...
...