Search Results for ""
751 - 760 of 3574 for Inverse FunctionsSearch Results
The series for the inverse tangent, tan^(-1)x=x-1/3x^3+1/5x^5+.... Plugging in x=1 gives Gregory's formula 1/4pi=1-1/3+1/5-1/7+1/9-.... This series is intimately connected ...
Machin's formula is given by 1/4pi=4cot^(-1)5-cot^(-1)239. There are a whole class of Machin-like formulas with various numbers of terms (although only four such formulas ...
Debye's asymptotic representation is an asymptotic expansion for a Hankel function of the first kind with nu approx x. For 1-nu/x>epsilon, nu/x=sinalpha, ...
The symbol defined by (v,n) = (2^(-2n){(4v^2-1)(4v^2-3^2)...[4v^2-(2n-1)^2]})/(n!) (1) = ((-1)^ncos(piv)Gamma(1/2+n-v)Gamma(1/2+n+v))/(pin!), (2) where Gamma(z) is the gamma ...
There are (at least) two equations known as Sommerfeld's formula. The first is J_nu(z)=1/(2pi)int_(-eta+iinfty)^(2pi-eta+iinfty)e^(izcost)e^(inu(t-pi/2))dt, where J_nu(z) is ...
Lambda_0(phi|m)=(F(phi|1-m))/(K(1-m))+2/piK(m)Z(phi|1-m), where phi is the Jacobi amplitude, m is the parameter, Z is the Jacobi zeta function, and F(phi|m^') and K(m) are ...
The complete elliptic integral of the second kind, illustrated above as a function of k, is defined by E(k) = E(1/2pi,k) (1) = ...
The problem of finding the connection between a continuous function f on the boundary partialR of a region R with a harmonic function taking on the value f on partialR. In ...
The odd divisor function sigma_k^((o))(n)=sum_(d|n; d odd)d^k (1) is the sum of kth powers of the odd divisors of a number n. It is the analog of the divisor function for odd ...
Simpson's rule is a Newton-Cotes formula for approximating the integral of a function f using quadratic polynomials (i.e., parabolic arcs instead of the straight line ...
...
View search results from all Wolfram sites (501482 matches)

