TOPICS
Search

Search Results for ""


941 - 950 of 1997 for Infinite SequenceSearch Results
Place 2n balls in a bag and number them 1 to 2n, then pick half of them at random. The number of different possible sums for n=1, 2, 3, ... are then 2, 5, 10, 17, 26, ... ...
A polygonal number of the form O_n=n(3n-2). The first few are 1, 8, 21, 40, 65, 96, 133, 176, ... (OEIS A000567). The generating function for the octagonal numbers is ...
The odd part Od(n) of a positive integer n is defined by Od(n)=n/(2^(b(n))), where b(n) is the exponent of the exact power of 2 dividing n. Od(n) is therefore the product of ...
An odd power is a number of the form m^n for m>0 an integer and n a positive odd integer. The first few odd powers are 1, 8, 27, 32, 64, 125, 128, 216, 243, 343, 512, ... ...
The paper folding constant is the constant given by P = sum_(k=0)^(infty)1/(2^(2^k))(1-1/(2^(2^(k+2))))^(-1) (1) = sum_(k=0)^(infty)(8^(2^k))/(2^(2^(k+2))-1) (2) = ...
Given a sequence {a_k}_(k=1)^n, a partial sum of the first N terms is given by S_N=sum_(k=1)^Na_k.
The pentanacci constant is the limiting ratio of adjacent pentanacci numbers. It is the algebraic number P = (x^5-x^4-x^3-x^2-x-1)_1 (1) = 1.96594823... (2) (OEIS A103814), ...
A figurate number which is given by Ptop_n=1/4Te_n(n+3)=1/(24)n(n+1)(n+2)(n+3), where Te_n is the nth tetrahedral number. The first few pentatope numbers are 1, 5, 15, 35, ...
Consider n intersecting ellipses. The maximal number of regions into which these divide the plane are N(n)=2n^2-2n+2=2(n^2-n+1), giving values for n=1, 2, ... of 2, 6, 14, ...
The maximal number of regions into which n lines divide a plane are N(n)=1/2(n^2+n+2) which, for n=1, 2, ... gives 2, 4, 7, 11, 16, 22, ... (OEIS A000124), the same maximal ...
1 ... 92|93|94|95|96|97|98 ... 200 Previous Next

...