Search Results for ""
461 - 470 of 3757 for Incomplete Gamma FunctionSearch Results
The lemniscate functions arise in rectifying the arc length of the lemniscate. The lemniscate functions were first studied by Jakob Bernoulli and Giulio Fagnano. A historical ...
The solution to the differential equation [D^(2v)+alphaD^v+betaD^0]y(t)=0 (1) is y(t)={e_alpha(t)-e_beta(t) for alpha!=beta; ...
A normal distribution with mean 0, P(x)=h/(sqrt(pi))e^(-h^2x^2). (1) The characteristic function is phi(t)=e^(-t^2/(4h^2)). (2) The mean, variance, skewness, and kurtosis ...
By analogy with the lemniscate functions, hyperbolic lemniscate functions can also be defined arcsinhlemnx = int_0^x(1+t^4)^(1/2)dt (1) = x_2F_1(-1/2,1/4;5/4;-x^4) (2) ...
A harmonic number is a number of the form H_n=sum_(k=1)^n1/k (1) arising from truncation of the harmonic series. A harmonic number can be expressed analytically as ...
Vardi's integral is the beautiful definite integral int_(pi/4)^(pi/2)lnlntanxdx = pi/2ln[sqrt(2pi)(Gamma(3/4))/(Gamma(1/4))] (1) = pi/4ln[(4pi^3)/(Gamma^4(1/4))] (2) = ...
The Fourier transform of the delta function is given by F_x[delta(x-x_0)](k) = int_(-infty)^inftydelta(x-x_0)e^(-2piikx)dx (1) = e^(-2piikx_0). (2)
F_x[1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2)](k)=e^(-2piikx_0-Gammapi|k|). This transform arises in the computation of the characteristic function of the Cauchy distribution.
Multivariate zeta function, also called multiple zeta values, multivariate zeta constants (Bailey et al. 2006, p. 43), multi-zeta values (Bailey et al. 2006, p. 17), and ...
Inverse function integration is an indefinite integration technique. While simple, it is an interesting application of integration by parts. If f and f^(-1) are inverses of ...
...
View search results from all Wolfram sites (420660 matches)

