TOPICS
Search

Search Results for ""


411 - 420 of 3564 for Incomplete Beta FunctionSearch Results
For x>0, J_0(x) = 2/piint_0^inftysin(xcosht)dt (1) Y_0(x) = -2/piint_0^inftycos(xcosht)dt, (2) where J_0(x) is a zeroth order Bessel function of the first kind and Y_0(x) is ...
The lemniscate functions arise in rectifying the arc length of the lemniscate. The lemniscate functions were first studied by Jakob Bernoulli and Giulio Fagnano. A historical ...
If (1-z)^(alpha+beta-gamma-1/2)_2F_1(2alpha,2beta;2gamma;z)=sum_(n=0)^inftya_nz^n, (1) where _2F_1(a,b;c;z) is a hypergeometric function, then (2) where (a)_n is a Pochhammer ...
By analogy with the lemniscate functions, hyperbolic lemniscate functions can also be defined arcsinhlemnx = int_0^x(1+t^4)^(1/2)dt (1) = x_2F_1(-1/2,1/4;5/4;-x^4) (2) ...
A generalized hypergeometric function _pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;z], is said to be Saalschützian if it is k-balanced with k=1, ...
The Fourier transform of the delta function is given by F_x[delta(x-x_0)](k) = int_(-infty)^inftydelta(x-x_0)e^(-2piikx)dx (1) = e^(-2piikx_0). (2)
F_x[1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2)](k)=e^(-2piikx_0-Gammapi|k|). This transform arises in the computation of the characteristic function of the Cauchy distribution.
Multivariate zeta function, also called multiple zeta values, multivariate zeta constants (Bailey et al. 2006, p. 43), multi-zeta values (Bailey et al. 2006, p. 17), and ...
Inverse function integration is an indefinite integration technique. While simple, it is an interesting application of integration by parts. If f and f^(-1) are inverses of ...
When the index nu is real, the functions J_nu(z), J_nu^'(z), Y_nu(z), and Y_nu^'(z) each have an infinite number of real zeros, all of which are simple with the possible ...
1 ... 39|40|41|42|43|44|45 ... 357 Previous Next

...