TOPICS
Search

Search Results for ""


11 - 20 of 13135 for Highly Composite NumberSearch Results
A colossally abundant number is a positive integer n for which there is a positive exponent epsilon such that (sigma(n))/(n^(1+epsilon))>=(sigma(k))/(k^(1+epsilon)) for all ...
An abundant number for which all proper divisors are deficient is called a primitive abundant number (Guy 1994, p. 46). The first few odd primitive abundant numbers are 945, ...
A round number is a number that is the product of a considerable number of comparatively small factors (Hardy 1999, p. 48). Round numbers are very rare. As Hardy (1999, p. ...
An abundant number, sometimes also called an excessive number, is a positive integer n for which s(n)=sigma(n)-n>n, (1) where sigma(n) is the divisor function and s(n) is the ...
There are two definitions of the Fermat number. The less common is a number of the form 2^n+1 obtained by setting x=1 in a Fermat polynomial, the first few of which are 3, 5, ...
A Poulet number is a Fermat pseudoprime to base 2, denoted psp(2), i.e., a composite number n such that 2^(n-1)=1 (mod n). The first few Poulet numbers are 341, 561, 645, ...
A Sierpiński number of the first kind is a number of the form S_n=n^n+1. The first few are 2, 5, 28, 257, 3126, 46657, 823544, 16777217, ... (OEIS A014566). Sierpiński proved ...
A Brier number is a number that is both a Riesel number and a Sierpiński number of the second kind, i.e., a number n such that for all k>=1, the numbers n·2^k+1 and n·2^k-1 ...
An integer is k-smooth if it has no prime factors >k. The following table gives the first few k-smooth numbers for small k. Berndt (1994, p. 52) called the 7-smooth numbers ...
A Carmichael number is an odd composite number n which satisfies Fermat's little theorem a^(n-1)-1=0 (mod n) (1) for every choice of a satisfying (a,n)=1 (i.e., a and n are ...
1|2|3|4|5 ... 1314 Previous Next

...