Search Results for ""
121 - 130 of 864 for Heron FormulaSearch Results
![](/common/images/search/spacer.gif)
The expected number of real zeros E_n of a random polynomial of degree n if the coefficients are independent and distributed normally is given by E_n = ...
The definite integral int_a^bx^ndx={(b^(n+1)-a^(n+1))/(n+1) for n!=1; ln(b/a) for n=-1, (1) where a, b, and x are real numbers and lnx is the natural logarithm.
Let H_nu^((iota))(x) be a Hankel function of the first or second kind, let x,nu>0, and define w=sqrt((x/nu)^2-1). Then ...
D^*Dpsi=del ^*del psi+1/4Rpsi, where D is the Dirac operator D:Gamma(S^+)->Gamma(S^-), del is the covariant derivative on spinors, and R is the scalar curvature.
int_0^(pi/2)cos^nxdx = int_0^(pi/2)sin^nxdx (1) = (sqrt(pi)Gamma(1/2(n+1)))/(nGamma(1/2n)) (2) = ((n-1)!!)/(n!!){1/2pi for n=2, 4, ...; 1 for n=3, 5, ..., (3) where Gamma(n) ...
When A and B are self-adjoint operators, e^(t(A+B))=lim_(n->infty)(e^(tA/n)e^(tB/n))^n.
Let x^__1 and s_1^2 be the observed mean and variance of a sample of N_1 drawn from a normal universe with unknown mean mu_((1)) and let x^__2 and s_2^2 be the observed mean ...
f(x) approx t_n(x)=sum_(k=0)^(2n)f_kzeta_k(x), where t_n(x) is a trigonometric polynomial of degree n such that t_n(x_k)=f_k for k=0, ..., 2n, and ...
J_n(z) = 1/(2pi)int_(-pi)^pie^(izcost)e^(in(t-pi/2))dt (1) = (i^(-n))/piint_0^pie^(izcost)cos(nt)dt (2) = 1/piint_0^picos(zsint-nt)dt (3) for n=0, 1, 2, ..., where J_n(z) is ...
Let J_nu(z) be a Bessel function of the first kind, N_nu(z) a Bessel function of the second kind, and j_(nu,n)(z) the zeros of z^(-nu)J_nu(z) in order of ascending real part. ...
![](/common/images/search/spacer.gif)
...