Search Results for ""
71 - 80 of 3733 for Gamma FunctionSearch Results
![](/common/images/search/spacer.gif)
A partial function is a function that is not total.
The Fransén-Robinson constant F is defined by F=int_0^infty(dx)/(Gamma(x))=2.8077702420... (OEIS A058655) where Gamma(x) is the gamma function. No closed-form expression in ...
There are two types of functions known as Hankel functions. The more common one is a complex function (also called a Bessel function of the third kind, or Weber Function) ...
J_m(x)=(2x^(m-n))/(2^(m-n)Gamma(m-n))int_0^1J_n(xt)t^(n+1)(1-t^2)^(m-n-1)dt, where J_m(x) is a Bessel function of the first kind and Gamma(x) is the gamma function.
There are two definitions of the Carmichael function. One is the reduced totient function (also called the least universal exponent function), defined as the smallest integer ...
By analogy with the log sine function, define the log cosine function by C_n=int_0^(pi/2)[ln(cosx)]^ndx. (1) The first few cases are given by C_1 = -1/2piln2 (2) C_2 = ...
For R[mu+nu]>0, |argp|<pi/4, and a>0, where J_nu(z) is a Bessel function of the first kind, Gamma(z) is the gamma function, and _1F_1(a;b;z) is a confluent hypergeometric ...
The central beta function is defined by beta(p)=B(p,p), (1) where B(p,q) is the beta function. It satisfies the identities beta(p) = 2^(1-2p)B(p,1/2) (2) = ...
where _3F_2(a,b,c;d,e;z) is a generalized hypergeometric function and Gamma(z) is the gamma function (Bailey 1935, p. 16; Koepf 1998, p. 32).
A zero function is a function that is almost everywhere zero. The function sometimes known as "the zero function" is the constant function with constant c=0, i.e., f(x)=0 ...
![](/common/images/search/spacer.gif)
...