Search Results for ""
451 - 460 of 3733 for Gamma FunctionSearch Results

There are two camps of thought on the meaning of general recursive function. One camp considers general recursive functions to be equivalent to the usual recursive functions. ...
The Weierstrass elliptic functions (or Weierstrass P-functions, voiced "p-functions") are elliptic functions which, unlike the Jacobi elliptic functions, have a second-order ...
A fractional integral of order 1/2. The semi-integral of t^lambda is given by D^(-1/2)t^lambda=(t^(lambda+1/2)Gamma(lambda+1))/(Gamma(lambda+3/2)), so the semi-integral of ...
A fractional derivative of order 1/2. The semiderivative of t^lambda is given by D^(1/2)t^lambda=(t^(lambda-1/2)Gamma(lambda+1))/(Gamma(lambda+1/2)), so the semiderivative of ...
For x>0, J_0(x) = 2/piint_0^inftysin(xcosht)dt (1) Y_0(x) = -2/piint_0^inftycos(xcosht)dt, (2) where J_0(x) is a zeroth order Bessel function of the first kind and Y_0(x) is ...
The solution to the differential equation [D^(2v)+alphaD^v+betaD^0]y(t)=0 (1) is y(t)={e_alpha(t)-e_beta(t) for alpha!=beta; ...
A normal distribution with mean 0, P(x)=h/(sqrt(pi))e^(-h^2x^2). (1) The characteristic function is phi(t)=e^(-t^2/(4h^2)). (2) The mean, variance, skewness, and kurtosis ...
By analogy with the lemniscate functions, hyperbolic lemniscate functions can also be defined arcsinhlemnx = int_0^x(1+t^4)^(1/2)dt (1) = x_2F_1(-1/2,1/4;5/4;-x^4) (2) ...
Vardi's integral is the beautiful definite integral int_(pi/4)^(pi/2)lnlntanxdx = pi/2ln[sqrt(2pi)(Gamma(3/4))/(Gamma(1/4))] (1) = pi/4ln[(4pi^3)/(Gamma^4(1/4))] (2) = ...
The Fourier transform of the delta function is given by F_x[delta(x-x_0)](k) = int_(-infty)^inftydelta(x-x_0)e^(-2piikx)dx (1) = e^(-2piikx_0). (2)

...