Search Results for ""
861 - 870 of 13135 for Fractional CalculusSearch Results

product_(k=1)^(n)(1+yq^k) = sum_(m=0)^(n)y^mq^(m(m+1)/2)[n; m]_q (1) = sum_(m=0)^(n)y^mq^(m(m+1)/2)((q)_n)/((q)_m(q)_(n-m)), (2) where [n; m]_q is a q-binomial coefficient.
If f(x,y) is an analytic function in a neighborhood of the point (x_0,y_0) (i.e., it can be expanded in a series of nonnegative integer powers of (x-x_0) and (y-y_0)), find a ...
The Cauchy product of two sequences f(n) and g(n) defined for nonnegative integers n is defined by (f degreesg)(n)=sum_(k=0)^nf(k)g(n-k).
If (1-z)^(a+b-c)_2F_1(2a,2b;2c;z)=sum_(n=0)^inftya_nz^n, then where (a)_n is a Pochhammer symbol and _2F_1(a,b;c;z) is a hypergeometric function.
The partial differential equation u_(xx)+(y^2)/(1-(y^2)/(c^2))u_(yy)+yu_y=0.
int_a^bf_1(x)dxint_a^bf_2(x)dx...int_a^bf_n(x)dx <=(b-a)^(n-1)int_a^bf_1(x)f_2(x)...f_n(x)dx, where f_1, f_2, ..., f_n are nonnegative integrable functions on [a,b] which are ...
If a_1>=a_2>=...>=a_n (1) b_1>=b_2>=...>=b_n, (2) then nsum_(k=1)^na_kb_k>=(sum_(k=1)^na_k)(sum_(k=1)^nb_k). (3) This is true for any distribution.
where _2F_1(a,b;c;z) is a hypergeometric function and _3F_2(a,b,c;d,e;z) is a generalized hypergeometric function.
A map f between topological spaces that maps closed sets to closed sets. If f is bijective, then f is closed <==>f is open <==>f^(-1) is continuous, where f^(-1) denotes the ...
Let A be a unital C^*-algebra, then an element u in A is called co-isometry if uu^*=1.

...