Search Results for ""
621 - 630 of 13135 for Fractional CalculusSearch Results
![](/common/images/search/spacer.gif)
Polynomials P_k(x) which form the Sheffer sequence for g(t) = (2t)/(e^t-1) (1) f(t) = (e^t-1)/(e^t+1) (2) and have generating function ...
Bubbles can meet only at angles of 120 degrees (for three bubbles) and cos^(-1)(-1/3) approx 109 degrees28^'16^('') (for four bubbles), where cos^(-1)(-1/3) is the ...
The Poisson-Charlier polynomials c_k(x;a) form a Sheffer sequence with g(t) = e^(a(e^t-1)) (1) f(t) = a(e^t-1), (2) giving the generating function ...
Let f be differentiable on the open interval (a,b) and continuous on the closed interval [a,b]. Then if f(a)=f(b), then there is at least one point c in (a,b) where f^'(c)=0. ...
Borwein et al. (2004, pp. 4 and 44) term the expression of the integrals I_1 = int_0^1x^xdx (1) = 0.783430510... (2) I_2 = int_0^1(dx)/(x^x) (3) = 1.291285997... (4) (OEIS ...
Polynomials S_k(x) which form the Sheffer sequence for g(t) = e^(-t) (1) f^(-1)(t) = ln(1/(1-e^(-t))), (2) where f^(-1)(t) is the inverse function of f(t), and have ...
The Euler-Lagrange differential equation is the fundamental equation of calculus of variations. It states that if J is defined by an integral of the form J=intf(t,y,y^.)dt, ...
The largest value of a set, function, etc. The maximum value of a set of elements A={a_i}_(i=1)^N is denoted maxA or max_(i)a_i, and is equal to the last element of a sorted ...
The smallest value of a set, function, etc. The minimum value of a set of elements A={a_i}_(i=1)^N is denoted minA or min_(i)a_i, and is equal to the first element of a ...
The Blancmange function, also called the Takagi fractal curve (Peitgen and Saupe 1988), is a pathological continuous function which is nowhere differentiable. Its name ...
![](/common/images/search/spacer.gif)
...