TOPICS
Search

Search Results for ""


381 - 390 of 13135 for Fractional CalculusSearch Results
A sequence of polynomials p_n satisfying the identities p_n(x+y)=sum_(k>=0)(n; k)p_k(x)p_(n-k)(y).
A distribution which arises in the study of integer spin particles in physics, P(k)=(k^s)/(e^(k-mu)-1). (1) Its integral is given by int_0^infty(k^sdk)/(e^(k-mu)-1) = ...
When n is an integer >=0, then J_n(z) and J_(n+m)(z) have no common zeros other than at z=0 for m an integer >=1, where J_n(z) is a Bessel function of the first kind. The ...
If P(x) is an irreducible cubic polynomial all of whose roots are real, then to obtain them by radicals, you must take roots of nonreal numbers at some point.
The definite integral int_a^bx^ndx={(b^(n+1)-a^(n+1))/(n+1) for n!=1; ln(b/a) for n=-1, (1) where a, b, and x are real numbers and lnx is the natural logarithm.
The Chebyshev integral is given by intx^p(1-x)^qdx=B(x;1+p,1+q), where B(x;a,b) is an incomplete beta function.
A closed interval is an interval that includes all of its limit points. If the endpoints of the interval are finite numbers a and b, then the interval {x:a<=x<=b} is denoted ...
A linear operator A:D(A)->H from its domain D(A) into a Hilbert space H is closed if for any sequence of vectors v_n in D(A) such that v_n->v and Av_n->x as n->infty, it ...
A set of functions {f_1(n,x),f_2(n,x)} is termed a complete biorthogonal system in the closed interval R if, they are biorthogonal, i.e., int_Rf_1(m,x)f_1(n,x)dx = ...
A function f(x) is said to be concave on an interval [a,b] if, for any points x_1 and x_2 in [a,b], the function -f(x) is convex on that interval (Gradshteyn and Ryzhik 2000).
1 ... 36|37|38|39|40|41|42 ... 1314 Previous Next

...