TOPICS
Search

Search Results for ""


2621 - 2630 of 13135 for Fractional CalculusSearch Results
In 1757, V. Riccati first recorded the generalizations of the hyperbolic functions defined by F_(n,r)^alpha(x)=sum_(k=0)^infty(alpha^k)/((nk+r)!)x^(nk+r), (1) for r=0, ..., ...
The geometric mean of a sequence {a_i}_(i=1)^n is defined by G(a_1,...,a_n)=(product_(i=1)^na_i)^(1/n). (1) Thus, G(a_1,a_2) = sqrt(a_1a_2) (2) G(a_1,a_2,a_3) = ...
A geometric series sum_(k)a_k is a series for which the ratio of each two consecutive terms a_(k+1)/a_k is a constant function of the summation index k. The more general case ...
The Gregory series is a pi formula found by Gregory and Leibniz and obtained by plugging x=1 into the Leibniz series, pi/4=sum_(k=1)^infty((-1)^(k+1))/(2k-1)=1-1/3+1/5-... ...
Any real function u(x,y) with continuous second partial derivatives which satisfies Laplace's equation, del ^2u(x,y)=0, (1) is called a harmonic function. Harmonic functions ...
The harmonic mean H(x_1,...,x_n) of n numbers x_i (where i=1, ..., n) is the number H defined by 1/H=1/nsum_(i=1)^n1/(x_i). (1) The harmonic mean of a list of numbers may be ...
Like the entire harmonic series, the harmonic series sum_(k=1)^infty1/(p_k)=infty (1) taken over all primes p_k also diverges, as first shown by Euler in 1737 (Nagell 1951, ...
The Hartley Transform is an integral transform which shares some features with the Fourier transform, but which, in the most common convention, multiplies the integral kernel ...
In cylindrical coordinates, the scale factors are h_r=1, h_theta=r, h_z=1, so the Laplacian is given by del ...
The Hénon-Heiles equation is a nonlinear nonintegrable Hamiltonian system with x^.. = -(partialV)/(partialx) (1) y^.. = -(partialV)/(partialy), (2) where the potential energy ...
1 ... 260|261|262|263|264|265|266 ... 1314 Previous Next

...