Search Results for ""
1331 - 1340 of 13135 for Fractional CalculusSearch Results
![](/common/images/search/spacer.gif)
The system of partial differential equations u_(xx)-u_(yy)+/-sinucosu+(cosu)/(sin^3u)(v_x^2-v_y^2)=0 (v_xcot^2u)_x=(v_ycot^2u)_y.
"Poincaré transformation" is the name sometimes (e.g., Misner et al. 1973, p. 68) given to what other authors (e.g., Weinberg 1972, p. 26) term an inhomogeneous Lorentz ...
Solutions to holomorphic differential equations are themselves holomorphic functions of time, initial conditions, and parameters.
The hypothesis is that, for X is a measure space, f_n(x)->f(x) for each x in X, as n->infty. The hypothesis may be weakened to almost everywhere convergence.
D_P(x)=lim_(epsilon->0)(lnmu(B_epsilon(x)))/(lnepsilon), where B_epsilon(x) is an n-dimensional ball of radius epsilon centered at x and mu is the probability measure.
The ordinary differential equation y^('')+k/xy^'+deltae^y=0.
rho_n(nu,x)=((1+nu-n)_n)/(sqrt(n!x^n))_1F_1(-n;1+nu-n;x), where (a)_n is a Pochhammer symbol and _1F_1(a;b;z) is a confluent hypergeometric function of the first kind.
For R[nu]>-1/2, J_nu(z)=(z/2)^nu2/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)cos(zcost)sin^(2nu)tdt, where J_nu(z) is a Bessel function of the first kind, and Gamma(z) is the gamma ...
Every bounded operator T acting on a Hilbert space H has a decomposition T=U|T|, where |T|=(T^*T)^(1/2) and U is a partial isometry. This decomposition is called polar ...
A function which has infinitely many derivatives at a point. If a function is not polygenic, it is monogenic.
![](/common/images/search/spacer.gif)
...