Search Results for ""
851 - 860 of 2603 for Fourier Series Square WaveSearch Results
An Artin L-function over the rationals Q encodes in a generating function information about how an irreducible monic polynomial over Z factors when reduced modulo each prime. ...
If the total group of the canonical series is divided into two parts, the difference between the number of points in each part and the double of the dimension of the complete ...
product_(k=1)^(n)(1+yq^k) = sum_(m=0)^(n)y^mq^(m(m+1)/2)[n; m]_q (1) = sum_(m=0)^(n)y^mq^(m(m+1)/2)((q)_n)/((q)_m(q)_(n-m)), (2) where [n; m]_q is a q-binomial coefficient.
If (1-z)^(a+b-c)_2F_1(2a,2b;2c;z)=sum_(n=0)^inftya_nz^n, then where (a)_n is a Pochhammer symbol and _2F_1(a,b;c;z) is a hypergeometric function.
Let s_b(n) be the sum of the base-b digits of n, and epsilon(n)=(-1)^(s_2(n)) the Thue-Morse sequence, then product_(n=0)^infty((2n+1)/(2n+2))^(epsilon(n))=1/2sqrt(2).
If, in an interval of x, sum_(r=1)^(n)a_r(x) is uniformly bounded with respect to n and x, and {v_r} is a sequence of positive non-increasing quantities tending to zero, then ...
A special case of the Artin L-function for the polynomial x^2+1. It is given by L(s)=product_(p odd prime)1/(1-chi^-(p)p^(-s)), (1) where chi^-(p) = {1 for p=1 (mod 4); -1 ...
A geometric sequence is a sequence {a_k}, k=0, 1, ..., such that each term is given by a multiple r of the previous one. Another equivalent definition is that a sequence is ...
For real, nonnegative terms x_n and real p with 0<p<1, the expression lim_(k->infty)x_0+(x_1+(x_2+(...+(x_k)^p)^p)^p)^p converges iff (x_n)^(p^n) is bounded.
The Jacobian group of a one-dimensional linear series is given by intersections of the base curve with the Jacobian curve of itself and two curves cutting the series.
...
View search results from all Wolfram sites (39030 matches)

