Search Results for ""
1741 - 1750 of 2603 for Fourier Series Square WaveSearch Results
The inverse erf function is the inverse function erfc^(-1)(z) of erfc(x) such that erfc(erfc^(-1)(x))=erfc^(-1)(erfc(x)), (1) with the first identity holding for 0<x<2 and ...
The inverse function of the Gudermannian y=gd^(-1)phi gives the vertical position y in the Mercator projection in terms of the latitude phi and may be defined for 0<=x<pi/2 ...
The inverse haversine function hav^(-1)(z) is defined by hav^(-1)(z)=2sin^(-1)(sqrt(z)). (1) The inverse haversine is implemented in the Wolfram Language as ...
Let x be a real number, and let R be the set of positive real numbers mu for which 0<|x-p/q|<1/(q^mu) (1) has (at most) finitely many solutions p/q for p and q integers. Then ...
Denoted zn(u,k) or Z(u). Z(phi|m)=E(phi|m)-(E(m)F(phi|m))/(K(m)), where phi is the Jacobi amplitude, m is the parameter, and F(phi|m) and K(m) are elliptic integrals of the ...
If p_1, ..., p_n are positive numbers which sum to 1 and f is a real continuous function that is convex, then f(sum_(i=1)^np_ix_i)<=sum_(i=1)^np_if(x_i). (1) If f is concave, ...
Kelvin defined the Kelvin functions bei and ber according to ber_nu(x)+ibei_nu(x) = J_nu(xe^(3pii/4)) (1) = e^(nupii)J_nu(xe^(-pii/4)), (2) = e^(nupii/2)I_nu(xe^(pii/4)) (3) ...
The continued fraction for K is [2; 1, 2, 5, 1, 1, 2, 1, 1, ...] (OEIS A002211). A plot of the first 256 terms of the continued fraction represented as a sequence of binary ...
A finitely generated discontinuous group of linear fractional transformations z->(az+b)/(cz+d) acting on a domain in the complex plane. The Apollonian gasket corresponds to a ...
If theta is a given irrational number, then the sequence of numbers {ntheta}, where {x}=x-|_x_|, is dense in the unit interval. Explicitly, given any alpha, 0<=alpha<=1, and ...
...
View search results from all Wolfram sites (39030 matches)

