Search Results for ""
51 - 60 of 1556 for Fourier Cosine SeriesSearch Results
A Maclaurin series is a Taylor series expansion of a function about 0, (1) Maclaurin series are named after the Scottish mathematician Colin Maclaurin. The Maclaurin series ...
A Kapteyn series is a series of the form sum_(n=0)^inftyalpha_nJ_(nu+n)[(nu+n)z], (1) where J_n(z) is a Bessel function of the first kind. Examples include Kapteyn's original ...
A series expansion is a representation of a particular function as a sum of powers in one of its variables, or by a sum of powers of another (usually elementary) function ...
At the age of 17, Bernard Mares proposed the definite integral (Borwein and Bailey 2003, p. 26; Bailey et al. 2006) C_2 = int_0^inftycos(2x)product_(n=1)^(infty)cos(x/n)dx ...
For R[mu+nu]>1, int_(-pi/2)^(pi/2)cos^(mu+nu-2)thetae^(itheta(mu-nu+2xi))dtheta=(piGamma(mu+nu-1))/(2^(mu+nu-2)Gamma(mu+xi)Gamma(nu-xi)), where Gamma(z) is the gamma function.
A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x=a is given by (1) ...
A test for the convergence of Fourier series. Let phi_x(t)=f(x+t)+f(x-t)-2f(x), then if int_0^pi(|phi_x(t)|dt)/t is finite, the Fourier series converges to f(x) at x.
The inverse of the Laplace transform F(t) = L^(-1)[f(s)] (1) = 1/(2pii)int_(gamma-iinfty)^(gamma+iinfty)e^(st)f(s)ds (2) f(s) = L[F(t)] (3) = int_0^inftyF(t)e^(-st)dt. (4)
A q-series is series involving coefficients of the form (a;q)_n = product_(k=0)^(n-1)(1-aq^k) (1) = product_(k=0)^(infty)((1-aq^k))/((1-aq^(k+n))) (2) = ...
Given a finitely generated Z-graded module M over a graded ring R (finitely generated over R_0, which is an Artinian local ring), define the Hilbert function of M as the map ...
...
View search results from all Wolfram sites (55666 matches)

