Search Results for ""
421 - 430 of 3364 for Floor FunctionSearch Results

By analogy with the lemniscate functions, hyperbolic lemniscate functions can also be defined arcsinhlemnx = int_0^x(1+t^4)^(1/2)dt (1) = x_2F_1(-1/2,1/4;5/4;-x^4) (2) ...
Mills (1947) proved the existence of a real constant A such that |_A^(3^n)_| (1) is prime for all integers n>=1, where |_x_| is the floor function. Mills (1947) did not, ...
The Fourier transform of the delta function is given by F_x[delta(x-x_0)](k) = int_(-infty)^inftydelta(x-x_0)e^(-2piikx)dx (1) = e^(-2piikx_0). (2)
F_x[1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2)](k)=e^(-2piikx_0-Gammapi|k|). This transform arises in the computation of the characteristic function of the Cauchy distribution.
Multivariate zeta function, also called multiple zeta values, multivariate zeta constants (Bailey et al. 2006, p. 43), multi-zeta values (Bailey et al. 2006, p. 17), and ...
Inverse function integration is an indefinite integration technique. While simple, it is an interesting application of integration by parts. If f and f^(-1) are inverses of ...
A sieving procedure that can be used in conjunction with Dixon's factorization method to factor large numbers n. Pick values of r given by r=|_sqrt(n)_|+k, (1) where k=1, 2, ...
When the index nu is real, the functions J_nu(z), J_nu^'(z), Y_nu(z), and Y_nu^'(z) each have an infinite number of real zeros, all of which are simple with the possible ...
The function defined by chi_nu(z)=sum_(k=0)^infty(z^(2k+1))/((2k+1)^nu). (1) It is related to the polylogarithm by chi_nu(z) = 1/2[Li_nu(z)-Li_nu(-z)] (2) = ...
If a function phi is harmonic in a sphere, then the value of phi at the center of the sphere is the arithmetic mean of its value on the surface.

...
 
         
	    
	
    
 View search results from all Wolfram sites (415817 matches)
View search results from all Wolfram sites (415817 matches)

