TOPICS
Search

Search Results for ""


51 - 60 of 1426 for Exponential IntegralSearch Results
A general integral transform is defined by g(alpha)=int_a^bf(t)K(alpha,t)dt, where K(alpha,t) is called the integral kernel of the transform.
A type of integral named after Henstock and Kurzweil. Every Lebesgue integrable function is HK integrable with the same value.
J_m(x)=(2x^(m-n))/(2^(m-n)Gamma(m-n))int_0^1J_n(xt)t^(n+1)(1-t^2)^(m-n-1)dt, where J_m(x) is a Bessel function of the first kind and Gamma(x) is the gamma function.
Euler integration was defined by Schanuel and subsequently explored by Rota, Chen, and Klain. The Euler integral of a function f:R->R (assumed to be piecewise-constant with ...
J_m(x)=(x^m)/(2^(m-1)sqrt(pi)Gamma(m+1/2))int_0^1cos(xt)(1-t^2)^(m-1/2)dt, where J_m(x) is a Bessel function of the first kind and Gamma(z) is the gamma function. Hankel's ...
Laplace's integral is one of the following integral representations of the Legendre polynomial P_n(x), P_n(x) = 1/piint_0^pi(du)/((x+sqrt(x^2-1)cosu)^(n+1))du (1) = ...
Let gamma be a path given parametrically by sigma(t). Let s denote arc length from the initial point. Then int_gammaf(s)ds = int_a^bf(sigma(t))|sigma^'(t)|dt (1) = ...
To compute an integral of the form int(dx)/(a+bx+cx^2), (1) complete the square in the denominator to obtain int(dx)/(a+bx+cx^2)=1/cint(dx)/((x+b/(2c))^2+(a/c-(b^2)/(4c^2))). ...
The line integral of a vector field F(x) on a curve sigma is defined by int_(sigma)F·ds=int_a^bF(sigma(t))·sigma^'(t)dt, (1) where a·b denotes a dot product. In Cartesian ...
A singular integral is an integral whose integrand reaches an infinite value at one or more points in the domain of integration. Even so, such integrals can converge, in ...
1 ... 3|4|5|6|7|8|9 ... 143 Previous Next

...