Search Results for ""
131 - 140 of 1426 for Exponential IntegralSearch Results
![](/common/images/search/spacer.gif)
An integral equation of the form f(x)=int_a^xK(x,t)phi(t)dt, where K(x,t) is the integral kernel, f(x) is a specified function, and phi(t) is the function to be solved for.
An integral equation of the form phi(x)=f(x)+int_a^xK(x,t)phi(t)dt, where K(x,t) is the integral kernel, f(x) is a specified function, and phi(t) is the function to be solved ...
For R[n]>-1 and R[z]>0, Pi(z,n) = n^zint_0^1(1-x)^nx^(z-1)dx (1) = (n!)/((z)_(n+1))n^z (2) = B(z,n+1), (3) where (z)_n is the Pochhammer symbol and B(p,q) is the beta ...
Any of the three standard forms in which an elliptic integral can be expressed.
Let 0<k^2<1. The incomplete elliptic integral of the third kind is then defined as Pi(n;phi,k) = int_0^phi(dtheta)/((1-nsin^2theta)sqrt(1-k^2sin^2theta)) (1) = ...
The complete elliptic integral of the second kind, illustrated above as a function of k, is defined by E(k) = E(1/2pi,k) (1) = ...
A very useful active feedback method for controlling things like temperature control systems, servo motors, and flow control valves.
At the age of 17, Bernard Mares proposed the definite integral (Borwein and Bailey 2003, p. 26; Bailey et al. 2006) C_2 = int_0^inftycos(2x)product_(n=1)^(infty)cos(x/n)dx ...
Let the elliptic modulus k satisfy 0<k^2<1. (This may also be written in terms of the parameter m=k^2 or modular angle alpha=sin^(-1)k.) The incomplete elliptic integral of ...
The complete elliptic integral of the first kind K(k), illustrated above as a function of the elliptic modulus k, is defined by K(k) = F(1/2pi,k) (1) = ...
![](/common/images/search/spacer.gif)
...