Search Results for ""
871 - 880 of 5395 for Exotic R 4Search Results
A polynomial A_n(x;a) given by the associated Sheffer sequence with f(t)=te^(at), (1) given by A_n(x;a)=x(x-an)^(n-1). (2) The generating function is ...
In general, the catacaustics of the astroid are complicated curves. For an astroid with parametric equations x = cos^3t (1) y = sin^3t, (2) the catacaustic for a radiant ...
A procedure for finding the quadratic factors for the complex conjugate roots of a polynomial P(x) with real coefficients. (1) Now write the original polynomial as ...
Define E(x;q,a)=psi(x;q,a)-x/(phi(q)), (1) where psi(x;q,a)=sum_(n<=x; n=a (mod q))Lambda(n) (2) (Davenport 1980, p. 121), Lambda(n) is the Mangoldt function, and phi(q) is ...
The system of ordinary differential equations u^' = A+u^2v-(B+1)u (1) v^' = Bu-u^2v (2) (Hairer et al. 1987, p. 112; Zwillinger 1997, p. 136). The so-called full Brusselator ...
For the cardioid given parametrically as x = a(1+cost)cost (1) y = a(1+cost)sint, (2) the negative pedal curve with respect to the pedal point (x_0,y_0)=(0,0) is the circle ...
The parametric equations for a catenary are x = t (1) y = acosh(t/a), (2) giving the evolute as x = t-a/2sinh((2t)/a) (3) y = 2acosh(t/(2a)). (4) For t>0, the evolute has arc ...
Gradshteyn and Ryzhik (2000) define the circulant determinant by (1) where omega_j is the nth root of unity. The second-order circulant determinant is |x_1 x_2; x_2 ...
For the parametric representation x = (2t^2)/(1+t^2) (1) y = (2t^3)/(1+t^2), (2) the catacaustic of this curve from the radiant point (8a,0) is given by x = ...
A set of functions {f_1(n,x),f_2(n,x)} is termed a complete biorthogonal system in the closed interval R if, they are biorthogonal, i.e., int_Rf_1(m,x)f_1(n,x)dx = ...
...
View search results from all Wolfram sites (339240 matches)

