Search Results for ""
531 - 540 of 5395 for Exotic R 4Search Results
The pedal curve of a logarithmic spiral with parametric equation f = e^(at)cost (1) g = e^(at)sint (2) for a pedal point at the pole is an identical logarithmic spiral x = ...
Given a Lyapunov characteristic exponent sigma_i, the corresponding Lyapunov characteristic number lambda_i is defined as lambda_i=e^(sigma_i). (1) For an n-dimensional ...
Polynomials s_n(x) which form the Sheffer sequence for f^(-1)(t)=1+t-e^t, (1) where f^(-1)(t) is the inverse function of f(t), and have generating function ...
An integer sequence given by the recurrence relation a(n)=a(a(n-2))+a(n-a(n-2)) with a(1)=a(2)=1. The first few values are 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, ...
The radical circle of the mixtilinear incircles has a center with trilinear center function alpha_(999)=cosA-2, (1) which is Kimberling center X_(999). It has radius (2) ...
The involute of the nephroid given by x = 1/2[3cost-cos(3t)] (1) y = 1/2[3sint-sin(3t)] (2) beginning at the point where the nephroid cuts the y-axis is given by x = 4cos^3t ...
The identities between the symmetric polynomials Pi_k(x_1,...,x_n) and the sums of kth powers of their variables S_k(x_1,...,x_n)=sum_(j=1)^nx_j^k. (1) The identities are ...
Let M be a finitely generated module over a commutative Noetherian ring R. Then there exists a finite set {N_i|1<=i<=l} of submodules of M such that 1. intersection ...
The involute of a parabola x = at^2 (1) y = at (2) is given by x_i = -(atsinh^(-1)(2t))/(2sqrt(4t^2+1)) (3) y_i = a(1/2t-(sinh^(-1)(2t))/(4sqrt(4t^2+1))). (4) Defining ...
Each subsequent row of Pascal's triangle is obtained by adding the two entries diagonally above. This follows immediately from the binomial coefficient identity (n; r) = ...
...
View search results from all Wolfram sites (339240 matches)

