Search Results for ""
3771 - 3780 of 5395 for Exotic R 4Search Results
The Lemoine ellipse is an inconic (that is always an ellipse) that has inconic parameters x:y:z=(2(b^2+c^2)-a^2)/(bc):(2(a^2+c^2)-b^2)/(ac): (2(a^2+b^2)-c^2)/(ab). (1) The ...
The Lester circle is the circle on which the circumcenter C, nine-point center N, and the first and second Fermat points X and X^' lie (Kimberling 1998, pp. 229-230). Besides ...
An ordering for the Cartesian product × of any two sets A and B with order relations <A and <B, respectively, such that if (a_1,b_1) and (a_2,b_2) both belong to A×B, then ...
The commutator series of a Lie algebra g, sometimes called the derived series, is the sequence of subalgebras recursively defined by g^(k+1)=[g^k,g^k], (1) with g^0=g. The ...
The lower central series of a Lie algebra g is the sequence of subalgebras recursively defined by g_(k+1)=[g,g_k], (1) with g_0=g. The sequence of subspaces is always ...
A representation of a Lie algebra g is a linear transformation psi:g->M(V), where M(V) is the set of all linear transformations of a vector space V. In particular, if V=R^n, ...
Consider a collection of diagonal matrices H_1,...,H_k, which span a subspace h. Then the ith eigenvalue, i.e., the ith entry along the diagonal, is a linear functional on h, ...
If g is a Lie algebra, then a subspace a of g is said to be a Lie subalgebra if it is closed under the Lie bracket. That is, a is a Lie subalgebra of g if for all x,y in a, ...
In n-dimensional Lorentzian space R^n=R^(1,n-1), the light cone C^(n-1) is defined to be the subset consisting of all vectors x=(x_0,x_1,...,x_(n-1)) (1) whose squared ...
A point about which inversion of two circles produced concentric circles. Every pair of distinct circles has two limiting points. The limiting points correspond to the point ...
...
View search results from all Wolfram sites (339240 matches)

