TOPICS
Search

Search Results for ""


3601 - 3610 of 5395 for Exotic R 4Search Results
The Fourier transform of a Gaussian function f(x)=e^(-ax^2) is given by F_x[e^(-ax^2)](k) = int_(-infty)^inftye^(-ax^2)e^(-2piikx)dx (1) = ...
The "Foxtrot series" is a mathematical sum that appeared in the June 2, 1996 comic strip FoxTrot by Bill Amend (Amend 1998, p. 19; Mitchell 2006/2007). It arose from a ...
The term "fractal dimension" is sometimes used to refer to what is more commonly called the capacity dimension of a fractal (which is, roughly speaking, the exponent D in the ...
The maximum possible weight of a fractional clique of a graph G is called the fractional clique number of G, denoted omega^*(G) (Godsil and Royle 2001, pp. 136-137) or ...
The fractional derivative of f(t) of order mu>0 (if it exists) can be defined in terms of the fractional integral D^(-nu)f(t) as D^muf(t)=D^m[D^(-(m-mu))f(t)], (1) where m is ...
A fractional ideal is a generalization of an ideal in a ring R. Instead, a fractional ideal is contained in the number field F, but has the property that there is an element ...
The Franel numbers are the numbers Fr_n=sum_(k=0)^n(n; k)^3, (1) where (n; k) is a binomial coefficient. The first few values for n=0, 1, ... are 1, 2, 10, 56, 346, ... (OEIS ...
In 1750, Benjamin Franklin constructed the above 8×8 semimagic square having magic constant 260. Any half-row or half-column in this square totals 130, and the four corners ...
An integral equation of the form phi(x)=f(x)+lambdaint_(-infty)^inftyK(x,t)phi(t)dt (1) phi(x)=1/(sqrt(2pi))int_(-infty)^infty(F(t)e^(-ixt)dt)/(1-sqrt(2pi)lambdaK(t)). (2) ...
Fredholm's theorem states that, if A is an m×n matrix, then the orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the ...
1 ... 358|359|360|361|362|363|364 ... 540 Previous Next

...