TOPICS
Search

Search Results for ""


261 - 270 of 5395 for Exotic R 4Search Results
The negabinary representation of a number n is its representation in base -2 (i.e., base negative 2). It is therefore given by the coefficients a_na_(n-1)...a_1a_0 in n = ...
cos(pi/8) = 1/2sqrt(2+sqrt(2)) (1) cos((3pi)/8) = 1/2sqrt(2-sqrt(2)) (2) cot(pi/8) = 1+sqrt(2) (3) cot((3pi)/8) = sqrt(2)-1 (4) csc(pi/8) = sqrt(4+2sqrt(2)) (5) csc((3pi)/8) ...
Let A denote an R-algebra, so that A is a vector space over R and A×A->A (1) (x,y)|->x·y. (2) Then A is said to be alternative if, for all x,y in A, (x·y)·y=x·(y·y) (3) ...
Define O = lim_(->)O(n),F=R (1) U = lim_(->)U(n),F=C (2) Sp = lim_(->)Sp(n),F=H. (3) Then Omega^2BU = BU×Z (4) Omega^4BO = BSp×Z (5) Omega^4BSp = BO×Z. (6)
The evolute of the cardioid x = cost(1+cost) (1) y = sint(1+cost) (2) is the curve x_e = 2/3a+1/3acostheta(1-costheta) (3) y_e = 1/3asintheta(1-costheta), (4) which is a ...
For the cardioid given parametrically as x = a(1+cost)cost (1) y = a(1+cost)sint, (2) the involute is given by x_i = 2a+3acostheta(1-costheta) (3) y_i = ...
The orthotomic of the unit circle represented by x = cost (1) y = sint (2) with a source at (x,y) is x_o = xcos(2t)-ysin(2t)+2sint (3) y_o = -xsin(2t)-ycos(2t)+2cost. (4)
The evolute of the cycloid x(t) = a(t-sint) (1) y(t) = a(1-cost) (2) is given by x(t) = a(t+sint) (3) y(t) = a(cost-1). (4) As can be seen in the above figure, the evolute is ...
The involute of the cycloid x = a(t-sint) (1) y = a(1-cost) (2) is given by x_i = a(t+sint) (3) y_i = a(3+cost). (4) As can be seen in the above figure, the involute is ...
The radial curve of the deltoid x = 1/3a[2cost+cos(2t)] (1) y = 1/3a[2sint-sin(2t)] (2) with radiant point (x_0,y_0) is the trifolium x_r = x_0+4/3a[cost-cos(2t)] (3) y_r = ...
1 ... 24|25|26|27|28|29|30 ... 540 Previous Next

...