TOPICS
Search

Search Results for ""


1461 - 1470 of 5395 for Exotic R 4Search Results
Young's geometry is a finite geometry which satisfies the following five axioms: 1. There exists at least one line. 2. Every line of the geometry has exactly three points on ...
Let f be a real-valued, continuous, and strictly increasing function on [0,c] with c>0. If f(0)=0, a in [0,c], and b in [0,f(c)], then int_0^af(x)dx+int_0^bf^(-1)(x)dx>=ab, ...
The surface area of a spherical segment. Call the radius of the sphere R, the upper and lower radii b and a, respectively, and the height of the spherical segment h. The zone ...
The constants C_n defined by C_n=[int_0^infty|d/(dt)((sint)/t)^n|dt]-1. (1) These constants can also be written as the sums C_n=2sum_(k=1)^infty(1+x_k^2)^(-n/2), (2) and ...
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
There are several q-analogs of the cosine function. The two natural definitions of the q-cosine defined by Koekoek and Swarttouw (1998) are given by cos_q(z) = ...
D_q=1/(1-q)lim_(epsilon->0)(lnI(q,epsilon))/(ln(1/epsilon),) (1) where I(q,epsilon)=sum_(i=1)^Nmu_i^q, (2) epsilon is the box size, and mu_i is the natural measure. The ...
The exponential function has two different natural q-extensions, denoted e_q(z) and E_q(z). They are defined by e_q(z) = sum_(n=0)^(infty)(z^n)/((q;q)_n) (1) = _1phi_0[0; ...
The q-analog of integration is given by int_0^1f(x)d(q,x)=(1-q)sum_(i=0)^inftyf(q^i)q^i, (1) which reduces to int_0^1f(x)dx (2) in the case q->1^- (Andrews 1986 p. 10). ...
There are several q-analogs of the sine function. The two natural definitions of the q-sine defined by Koekoek and Swarttouw (1998) are given by sin_q(z) = ...
1 ... 144|145|146|147|148|149|150 ... 540 Previous Next

...