Search Results for ""
791 - 800 of 2127 for Evaluation of formulas, expressions, and...Search Results
A symmetry of a differential equation is a transformation that keeps its family of solutions invariant. Symmetry analysis can be used to solve some ordinary and partial ...
The ordinary differential equation y^('')-(a+bk^2sn^2x+qk^4sn^4x)y=0, where snx=sn(x,k) is a Jacobi elliptic function (Arscott 1981).
The ordinary differential equation (x^py^')^'+/-x^sigmay^n=0.
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
In two-dimensional polar coordinates, the Helmholtz differential equation is 1/rpartial/(partialr)(r(partialF)/(partialr))+1/(r^2)(partial^2F)/(partialtheta^2)+k^2F=0. (1) ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
The second-order ordinary differential equation (d^2y)/(dx^2)+[theta_0+2sum_(n=1)^inftytheta_ncos(2nx)]y=0, (1) where theta_n are fixed constants. A general solution can be ...
A linear ordinary differential equation of order n is said to be homogeneous if it is of the form a_n(x)y^((n))+a_(n-1)(x)y^((n-1))+...+a_1(x)y^'+a_0(x)y=0, (1) where ...
...
View search results from all Wolfram sites (120733 matches)

