Search Results for ""
511 - 520 of 1485 for Elliptic integralSearch Results
F_x[1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2)](k)=e^(-2piikx_0-Gammapi|k|). This transform arises in the computation of the characteristic function of the Cauchy distribution.
Let R(x) be the ramp function, then the Fourier transform of R(x) is given by F_x[R(x)](k) = int_(-infty)^inftye^(-2piikx)R(x)dx (1) = i/(4pi)delta^'(k)-1/(4pi^2k^2), (2) ...
Let Pi(x) be the rectangle function, then the Fourier transform is F_x[Pi(x)](k)=sinc(pik), where sinc(x) is the sinc function.
F_x[sin(2pik_0x)](k) = int_(-infty)^inftye^(-2piikx)((e^(2piik_0x)-e^(-2piik_0x))/(2i))dx (1) = 1/2iint_(-infty)^infty[-e^(-2pii(k-k_0)x)+e^(-2pii(k+k_0)x)]dx (2) = ...
The interesting function defined by the definite integral G(x)=int_0^xsin(tsint)dt, illustrated above (Glasser 1990). The integral cannot be done in closed form, but has a ...
G = int_0^infty(e^(-u))/(1+u)du (1) = -eEi(-1) (2) = 0.596347362... (3) (OEIS A073003), where Ei(x) is the exponential integral. Stieltjes showed it has the continued ...
A substitution which can be used to transform integrals involving square roots into a more tractable form. form substitution sqrt(x^2+a^2) x=asinhu sqrt(x^2-a^2) x=acoshu
The finite Fourier cosine transform of an apodization function, also known as an apparatus function. The instrument function I(k) corresponding to a given apodization ...
A polynomial admitting a multiplicative inverse. In the polynomial ring R[x], where R is an integral domain, the invertible polynomials are precisely the constant polynomials ...
The name Lobachevsky's function is sometimes given to the function Lambda(theta)=1/2Cl_2(2theta), also denoted Pi(theta), where Cl_2(x) is Clausen's integral.
...