Search Results for ""
1231 - 1240 of 1485 for Elliptic integralSearch Results
A number n for which the harmonic mean of the divisors of n, i.e., nd(n)/sigma(n), is an integer, where d(n)=sigma_0(n) is the number of positive integer divisors of n and ...
Any real function u(x,y) with continuous second partial derivatives which satisfies Laplace's equation, del ^2u(x,y)=0, (1) is called a harmonic function. Harmonic functions ...
In cylindrical coordinates, the scale factors are h_r=1, h_theta=r, h_z=1, so the Laplacian is given by del ...
The Hénon-Heiles equation is a nonlinear nonintegrable Hamiltonian system with x^.. = -(partialV)/(partialx) (1) y^.. = -(partialV)/(partialy), (2) where the potential energy ...
A natural extension of the Riemann p-differential equation given by (d^2w)/(dx^2)+(gamma/x+delta/(x-1)+epsilon/(x-a))(dw)/(dx)+(alphabetax-q)/(x(x-1)(x-a))w=0 where ...
A Hilbert space is a vector space H with an inner product <f,g> such that the norm defined by |f|=sqrt(<f,f>) turns H into a complete metric space. If the metric defined by ...
The hyperbolic cosecant is defined as cschz=1/(sinhz)=2/(e^z-e^(-z)). (1) It is implemented in the Wolfram Language as Csch[z]. It is related to the hyperbolic cotangent ...
The hyperbolic cotangent is defined as cothz=(e^z+e^(-z))/(e^z-e^(-z))=(e^(2z)+1)/(e^(2z)-1). (1) The notation cthz is sometimes also used (Gradshteyn and Ryzhik 2000, p. ...
The hyperbolic secant is defined as sechz = 1/(coshz) (1) = 2/(e^z+e^(-z)), (2) where coshz is the hyperbolic cosine. It is implemented in the Wolfram Language as Sech[z]. On ...
There are at least two definitions of hypercomplex numbers. Clifford algebraists call their higher dimensional numbers hypercomplex, even though they do not share all the ...
...
View search results from all Wolfram sites (63031 matches)

