TOPICS
Search

Search Results for ""


1231 - 1240 of 1485 for Elliptic integralSearch Results
A number n for which the harmonic mean of the divisors of n, i.e., nd(n)/sigma(n), is an integer, where d(n)=sigma_0(n) is the number of positive integer divisors of n and ...
Any real function u(x,y) with continuous second partial derivatives which satisfies Laplace's equation, del ^2u(x,y)=0, (1) is called a harmonic function. Harmonic functions ...
In cylindrical coordinates, the scale factors are h_r=1, h_theta=r, h_z=1, so the Laplacian is given by del ...
The Hénon-Heiles equation is a nonlinear nonintegrable Hamiltonian system with x^.. = -(partialV)/(partialx) (1) y^.. = -(partialV)/(partialy), (2) where the potential energy ...
A natural extension of the Riemann p-differential equation given by (d^2w)/(dx^2)+(gamma/x+delta/(x-1)+epsilon/(x-a))(dw)/(dx)+(alphabetax-q)/(x(x-1)(x-a))w=0 where ...
A Hilbert space is a vector space H with an inner product <f,g> such that the norm defined by |f|=sqrt(<f,f>) turns H into a complete metric space. If the metric defined by ...
The hyperbolic cosecant is defined as cschz=1/(sinhz)=2/(e^z-e^(-z)). (1) It is implemented in the Wolfram Language as Csch[z]. It is related to the hyperbolic cotangent ...
The hyperbolic cotangent is defined as cothz=(e^z+e^(-z))/(e^z-e^(-z))=(e^(2z)+1)/(e^(2z)-1). (1) The notation cthz is sometimes also used (Gradshteyn and Ryzhik 2000, p. ...
The hyperbolic secant is defined as sechz = 1/(coshz) (1) = 2/(e^z+e^(-z)), (2) where coshz is the hyperbolic cosine. It is implemented in the Wolfram Language as Sech[z]. On ...
There are at least two definitions of hypercomplex numbers. Clifford algebraists call their higher dimensional numbers hypercomplex, even though they do not share all the ...
1 ... 121|122|123|124|125|126|127 ... 149 Previous Next

...