Search Results for ""
1 - 10 of 1736 for Elliptic Integralofthe Second KindSearch Results
![](/common/images/search/spacer.gif)
Let the elliptic modulus k satisfy 0<k^2<1. (This may also be written in terms of the parameter m=k^2 or modular angle alpha=sin^(-1)k.) The incomplete elliptic integral of ...
The complete elliptic integral of the second kind, illustrated above as a function of k, is defined by E(k) = E(1/2pi,k) (1) = ...
Special functions which arise as solutions to second order ordinary differential equations are commonly said to be "of the first kind" if they are nonsingular at the origin, ...
Let the elliptic modulus k satisfy 0<k^2<1, and the Jacobi amplitude be given by phi=amu with -pi/2<phi<pi/2. The incomplete elliptic integral of the first kind is then ...
Let 0<k^2<1. The incomplete elliptic integral of the third kind is then defined as Pi(n;phi,k) = int_0^phi(dtheta)/((1-nsin^2theta)sqrt(1-k^2sin^2theta)) (1) = ...
H_n^((2))(z)=J_n(z)-iY_n(z), (1) where J_n(z) is a Bessel function of the first kind and Y_n(z) is a Bessel function of the second kind. Hankel functions of the second kind ...
The spherical Bessel function of the second kind, denoted y_nu(z) or n_nu(z), is defined by y_nu(z)=sqrt(pi/(2z))Y_(nu+1/2)(z), (1) where Y_nu(z) is a Bessel function of the ...
Ellipsoidal harmonics of the second kind, also known as Lamé functions of the second kind, are variously defined as F_m^p(x)=(2m+1)E_m^p(x) ...
The modified bessel function of the second kind is the function K_n(x) which is one of the solutions to the modified Bessel differential equation. The modified Bessel ...
The complete elliptic integral of the first kind K(k), illustrated above as a function of the elliptic modulus k, is defined by K(k) = F(1/2pi,k) (1) = ...
![](/common/images/search/spacer.gif)
...