Search Results for ""
271 - 280 of 2936 for Diophantine Equation 3rd PowersSearch Results
To solve the heat conduction equation on a two-dimensional disk of radius a=1, try to separate the equation using U(r,theta,t)=R(r)Theta(theta)T(t). (1) Writing the theta and ...
In toroidal coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshu-cosv)U(u)V(v)Psi(psi), (2) ...
An ordinary differential equation of order n is an equation of the form F(x,y,y^',...,y^((n)))=0.
In two-dimensional polar coordinates, the Helmholtz differential equation is 1/rpartial/(partialr)(r(partialF)/(partialr))+1/(r^2)(partial^2F)/(partialtheta^2)+k^2F=0. (1) ...
In bispherical coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshv-cosu)U(u)V(v)Psi(psi), (2) ...
In two-dimensional Cartesian coordinates, attempt separation of variables by writing F(x,y)=X(x)Y(y), (1) then the Helmholtz differential equation becomes ...
The Helmholtz differential equation in spherical coordinates is separable. In fact, it is separable under the more general condition that k^2 is of the form ...
On the surface of a sphere, attempt separation of variables in spherical coordinates by writing F(theta,phi)=Theta(theta)Phi(phi), (1) then the Helmholtz differential ...
Using the notation of Byerly (1959, pp. 252-253), Laplace's equation can be reduced to (1) where alpha = cint_c^lambda(dlambda)/(sqrt((lambda^2-b^2)(lambda^2-c^2))) (2) = ...
In conical coordinates, Laplace's equation can be written ...
...