Search Results for ""
1891 - 1900 of 2936 for Diophantine Equation 3rd PowersSearch Results
![](/common/images/search/spacer.gif)
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and is a join-homomorphism, then it is a join-embedding.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If K=L and h is a join-homomorphism, then we call h a join-endomorphism.
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. Then the mapping h is a join-homomorphism provided that for any x,y in L, h(x v y)=h(x) v h(y). It is also ...
Let L=(L, ^ , v ) and K=(K, ^ , v ) be lattices, and let h:L->K. If h is one-to-one and onto, then it is a join-isomorphism if it preserves joins.
The Jordan canonical form, also called the classical canonical form, of a special type of block matrix in which each block consists of Jordan blocks with possibly differing ...
A Jordan curve is a plane curve which is topologically equivalent to (a homeomorphic image of) the unit circle, i.e., it is simple and closed. It is not known if every Jordan ...
Jordan's lemma shows the value of the integral I=int_(-infty)^inftyf(x)e^(iax)dx (1) along the infinite upper semicircle and with a>0 is 0 for "nice" functions which satisfy ...
A fractal derived from the Koch snowflake. The base curve and motif for the fractal are illustrated below. The area enclosed by pieces of the curve after the nth iteration is ...
The approximation for pi given by pi approx sqrt((40)/3-2sqrt(3)) (1) = 1/3sqrt(120-18sqrt(3)) (2) = 3.141533.... (3) In the above figure, let OA=OF=1, and construct the ...
Also known as metric entropy. Divide phase space into D-dimensional hypercubes of content epsilon^D. Let P_(i_0,...,i_n) be the probability that a trajectory is in hypercube ...
![](/common/images/search/spacer.gif)
...