Search Results for ""
231 - 240 of 3632 for Diophantine Equation 2nd PowersSearch Results
![](/common/images/search/spacer.gif)
(d^2u)/(dz^2)+(du)/(dz)+(k/z+(1/4-m^2)/(z^2))u=0. (1) Let u=e^(-z/2)W_(k,m)(z), where W_(k,m)(z) denotes a Whittaker function. Then (1) becomes ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
A partial differential equation of second-order, i.e., one of the form Au_(xx)+2Bu_(xy)+Cu_(yy)+Du_x+Eu_y+F=0, (1) is called hyperbolic if the matrix Z=[A B; B C] (2) ...
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
The van der Pol equation is an ordinary differential equation that can be derived from the Rayleigh differential equation by differentiating and setting y=y^'. It is an ...
A partial differential equation of second-order, i.e., one of the form Au_(xx)+2Bu_(xy)+Cu_(yy)+Du_x+Eu_y+F=0, (1) is called parabolic if the matrix Z=[A B; B C] (2) ...
The second-order ordinary differential equation y^('')+[A+Bcos(2x)+Ccos(4x)]y=0.
Consider a first-order ODE in the slightly different form p(x,y)dx+q(x,y)dy=0. (1) Such an equation is said to be exact if (partialp)/(partialy)=(partialq)/(partialx). (2) ...
![](/common/images/search/spacer.gif)
...