Search Results for ""
801 - 810 of 903 for Coordinate PlanesSearch Results
The exterior derivative of a function f is the one-form df=sum_(i)(partialf)/(partialx_i)dx_i (1) written in a coordinate chart (x_1,...,x_n). Thinking of a function as a ...
The term "gradient" has several meanings in mathematics. The simplest is as a synonym for slope. The more general gradient, called simply "the" gradient in vector analysis, ...
The two-dimensional Hammersley point set of order m is defined by taking all numbers in the range from 0 to 2^m-1 and interpreting them as binary fractions. Calling these ...
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
In conical coordinates, Laplace's equation can be written ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
...
View search results from all Wolfram sites (9806 matches)

