Search Results for ""
7371 - 7380 of 13135 for Coordinate GeometrySearch Results
![](/common/images/search/spacer.gif)
For R[mu+nu]>0, |argp|<pi/4, and a>0, where J_nu(z) is a Bessel function of the first kind, Gamma(z) is the gamma function, and _1F_1(a;b;z) is a confluent hypergeometric ...
int_0^inftyJ_0(ax)cos(cx)dx={0 a<c; 1/(sqrt(a^2-c^2)) a>c (1) int_0^inftyJ_0(ax)sin(cx)dx={1/(sqrt(c^2-a^2)) a<c; 0 a>c, (2) where J_0(z) is a zeroth order Bessel function of ...
where R[nu]>-1, |argp|<pi/4, and a, b>0, J_nu(z) is a Bessel function of the first kind, and I_nu(z) is a modified Bessel function of the first kind.
In the calculus of variations, the condition f_(y^')(x,y,y^'(x_-))=f_(y^')(x,y,y^'(x_+)) must hold at a corner (x,y) of a minimizing arc E_(12).
If f is a continuous real-valued function on [a,b] and if any epsilon>0 is given, then there exists a polynomial p on [a,b] such that |f(x)-P(x)|<epsilon for all x in [a,b]. ...
The operator e^(nut^2/2) which satisfies e^(nut^2/2)p(x)=1/(sqrt(2pinu))int_(-infty)^inftye^(-u^2/(2nu))p(x+u)du for nu>0.
If 0<=a,b,c,d<=1, then (1-a)(1-b)(1-c)(1-d)+a+b+c+d>=1. This is a special case of the general inequality product_(i=1)^n(1-a_i)+sum_(i=1)^na_i>=1 for 0<=a_1,a_2,...,a_n<=1. ...
A function, continuous in a finite closed interval, can be approximated with a preassigned accuracy by polynomials. A function of a real variable which is continuous and has ...
A weighted graph is a graph in which each branch is given a numerical weight. A weighted graph is therefore a special type of labeled graph in which the labels are numbers ...
Let H=l^2, (alpha_n) be a bounded sequence of complex numbers, and (xi_n) be the (usual) standard orthonormal basis of H, that is, (xi_n)(m)=delta_(nm), n,m in N, where ...
![](/common/images/search/spacer.gif)
...