TOPICS
Search

Search Results for ""


81 - 90 of 298 for Conic sectionsSearch Results
An ellipse intersects a circle in 0, 1, 2, 3, or 4 points. The points of intersection of a circle of center (x_0,y_0) and radius r with an ellipse of semi-major and ...
Confocal parabolas are parabolas sharing a common focus.
A pair of conics obtained by expanding an equation in Monge's form z=F(x,y) in a Maclaurin series z = z(0,0)+z_1x+z_2y+1/2(z_(11)x^2+2z_(12)xy+z_(22)y^2)+... (1) = ...
The eccentric angle of a point on an ellipse with semimajor axes of length a and semiminor axes of length b is the angle t in the parametrization x = acost (1) y = bsint, (2) ...
If P(x,y) and P(x^',y^') are two points on an ellipse (x^2)/(a^2)+(y^2)/(b^2)=1, (1) with eccentric angles phi and phi^' such that tanphitanphi^'=b/a (2) and A=P(a,0) and ...
The evolute of a hyperbola with parametric equations x = acosht (1) y = bsinht (2) is x_e = ((a^2+b^2))/acosh^3t (3) y_e = -((a^2+b^2))/bsinh^3t, (4) which is similar to a ...
Given a parabola with parametric equations x = at^2 (1) y = at, (2) the evolute is given by x_e = 1/2a(1+6t^2) (3) y_e = -4at^3. (4) Eliminating x and y gives the implicit ...
The inverse curve for a parabola given by x = at^2 (1) y = 2at (2) with inversion center (x_0,y_0) and inversion radius k is x = x_0+(k(at^2-x_0))/((at^2+x_0)^2+(2at-y_0)^2) ...
The smallest radial distance of an ellipse as measured from a focus. Taking v=0 in the equation of an ellipse r=(a(1-e^2))/(1+ecosv) gives the periapsis distance r_-=a(1-e). ...
The semiminor axis (also called the minor semi-axis, minor semiaxis, or minor radius) of an ellipse (or related figure) is half its extent along the shorter of the two ...
1 ... 6|7|8|9|10|11|12 ... 30 Previous Next

...