TOPICS
Search

Search Results for ""


151 - 160 of 820 for Confluent Hypergeometric Functionofthe F...Search Results
A Brier number is a number that is both a Riesel number and a Sierpiński number of the second kind, i.e., a number n such that for all k>=1, the numbers n·2^k+1 and n·2^k-1 ...
Lambda_0(phi|m)=(F(phi|1-m))/(K(1-m))+2/piK(m)Z(phi|1-m), where phi is the Jacobi amplitude, m is the parameter, Z is the Jacobi zeta function, and F(phi|m^') and K(m) are ...
An involution of a set S is a permutation of S which does not contain any permutation cycles of length >2 (i.e., it consists exclusively of fixed points and transpositions). ...
Let H_nu^((iota))(x) be a Hankel function of the first or second kind, let x,nu>0, and define w=sqrt((x/nu)^2-1). Then ...
J_m(x)=(x^m)/(2^(m-1)sqrt(pi)Gamma(m+1/2))int_0^1cos(xt)(1-t^2)^(m-1/2)dt, where J_m(x) is a Bessel function of the first kind and Gamma(z) is the gamma function. Hankel's ...
J_n(z) = 1/(2pi)int_(-pi)^pie^(izcost)e^(in(t-pi/2))dt (1) = (i^(-n))/piint_0^pie^(izcost)cos(nt)dt (2) = 1/piint_0^picos(zsint-nt)dt (3) for n=0, 1, 2, ..., where J_n(z) is ...
The integral transform (Kf)(x)=int_0^inftysqrt(xt)K_nu(xt)f(t)dt, where K_nu(x) is a modified Bessel function of the second kind. Note the lower limit of 0, not -infty as ...
Model completion is a term employed when existential closure is successful. The formation of the complex numbers, and the move from affine to projective geometry, are ...
For R[nu]>-1/2, J_nu(z)=(z/2)^nu2/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)cos(zcost)sin^(2nu)tdt, where J_nu(z) is a Bessel function of the first kind, and Gamma(z) is the gamma ...
P(Z)=Z/(sigma^2)exp(-(Z^2+|V|^2)/(2sigma^2))I_0((Z|V|)/(sigma^2)), where I_0(z) is a modified Bessel function of the first kind and Z>0. For a derivation, see Papoulis ...
1 ... 13|14|15|16|17|18|19 ... 82 Previous Next

...