Search Results for ""
211 - 220 of 2241 for Clairauts Differential EquationSearch Results
The Fredholm integral equation of the second kind f(x)=1+1/piint_(-1)^1(f(t))/((x-t)^2+1)dt that arises in electrostatics (Love 1949, Fox and Goodwin 1953, and Abbott 2002).
A second-order ordinary differential equation d/(dx)[p(x)(dy)/(dx)]+[lambdaw(x)-q(x)]y=0, where lambda is a constant and w(x) is a known function called either the density or ...
The so-called generalized Kadomtsev-Petviashvili-Burgers equation is the partial differential equation ...
In spherical coordinates, the scale factors are h_r=1, h_theta=rsinphi, h_phi=r, and the separation functions are f_1(r)=r^2, f_2(theta)=1, f_3(phi)=sinphi, giving a Stäckel ...
To find the motion of a rectangular membrane with sides of length L_x and L_y (in the absence of gravity), use the two-dimensional wave equation ...
In toroidal coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshu-cosv)U(u)V(v)Psi(psi), (2) ...
The partial differential equation u_t+u_x+uu_x-u_(xxt)=0 (Benjamin et al. 1972; Arvin and Goldstein 1985; Zwillinger 1997, p. 130). A generalized version is given by u_t-del ...
Kepler's equation gives the relation between the polar coordinates of a celestial body (such as a planet) and the time elapsed from a given initial point. Kepler's equation ...
In bispherical coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshv-cosu)U(u)V(v)Psi(psi), (2) ...
The Rabinovich-Fabrikant equation is the set of coupled linear ordinary differential equations given by x^. = y(z-1+x^2)+gammax (1) y^. = x(3z+1-x^2)+gammay (2) z^. = ...
...
View search results from all Wolfram sites (30924 matches)

