Search Results for ""
1461 - 1470 of 1812 for Cayley graphsSearch Results

_2F_1(a,b;c;z)=int_0^1(t^(b-1)(1-t)^(c-b-1))/((1-tz)^a)dt, (1) where _2F_1(a,b;c;z) is a hypergeometric function. The solution can be written using the Euler's ...
(1) for p in [0,1], where delta is the central difference and E_(2n) = G_(2n)-G_(2n+1) (2) = B_(2n)-B_(2n+1) (3) F_(2n) = G_(2n+1) (4) = B_(2n)+B_(2n+1), (5) where G_k are ...
A continuous statistical distribution which arises in the testing of whether two observed samples have the same variance. Let chi_m^2 and chi_n^2 be independent variates ...
A formula for numerical integration, (1) where C_(2n) = sum_(i=0)^(n)f_(2i)cos(tx_(2i))-1/2[f_(2n)cos(tx_(2n))+f_0cos(tx_0)] (2) C_(2n-1) = ...
Suppose f(x) is continuous at a stationary point x_0. 1. If f^'(x)>0 on an open interval extending left from x_0 and f^'(x)<0 on an open interval extending right from x_0, ...
The forward difference is a finite difference defined by Deltaa_n=a_(n+1)-a_n. (1) Higher order differences are obtained by repeated operations of the forward difference ...
The Fourier transform of a Gaussian function f(x)=e^(-ax^2) is given by F_x[e^(-ax^2)](k) = int_(-infty)^inftye^(-ax^2)e^(-2piikx)dx (1) = ...
For a positive integer n, (2pi)^((n-1)/2)n^(1/2-nz)Gamma(nz)=product_(k=0)^(n-1)Gamma(z+k/n),
The second-order ordinary differential equation (1-x^2)y^('')-2(mu+1)xy^'+(nu-mu)(nu+mu+1)y=0 (1) sometimes called the hyperspherical differential equation (Iyanaga and ...
A generalization of the confluent hypergeometric differential equation given by (1) The solutions are given by y_1 = x^(-A)e^(-f(x))_1F_1(a;b;h(x)) (2) y_2 = ...

...