Search Results for ""
51 - 60 of 123 for CauchySearch Results
A set partition of the rational numbers into two nonempty subsets S_1 and S_2 such that all members of S_1 are less than those of S_2 and such that S_1 has no greatest ...
A real function is said to be differentiable at a point if its derivative exists at that point. The notion of differentiability can also be extended to complex functions ...
The extended mean-value theorem (Anton 1984, pp. 543-544), also known as the Cauchy mean-value theorem (Anton 1984, pp. 543) and Cauchy's mean-value formula (Apostol 1967, p. ...
The harmonic conjugate to a given function u(x,y) is a function v(x,y) such that f(x,y)=u(x,y)+iv(x,y) is complex differentiable (i.e., satisfies the Cauchy-Riemann ...
Let 1/p+1/q=1 (1) with p, q>1. Then Hölder's inequality for integrals states that int_a^b|f(x)g(x)|dx<=[int_a^b|f(x)|^pdx]^(1/p)[int_a^b|g(x)|^qdx]^(1/q), (2) with equality ...
The Lorentzian function is the singly peaked function given by L(x)=1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2), (1) where x_0 is the center and Gamma is a parameter specifying ...
A Taylor series remainder formula that gives after n terms of the series R_n=(f^((n+1))(x^*))/(n!p)(x-x^*)^(n+1-p)(x-x_0)^p for x^* in (x_0,x) and any p>0 (Blumenthal 1926, ...
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
If a_1>=a_2>=...>=a_n (1) b_1>=b_2>=...>=b_n, (2) then nsum_(k=1)^na_kb_k>=(sum_(k=1)^na_k)(sum_(k=1)^nb_k). (3) This is true for any distribution.
A complete metric space is a metric space in which every Cauchy sequence is convergent. Examples include the real numbers with the usual metric, the complex numbers, ...
...
View search results from all Wolfram sites (668 matches)

