Search Results for ""
51 - 60 of 123 for CauchySearch Results
A set partition of the rational numbers into two nonempty subsets S_1 and S_2 such that all members of S_1 are less than those of S_2 and such that S_1 has no greatest ...
A real function is said to be differentiable at a point if its derivative exists at that point. The notion of differentiability can also be extended to complex functions ...
The extended mean-value theorem (Anton 1984, pp. 543-544), also known as the Cauchy mean-value theorem (Anton 1984, pp. 543) and Cauchy's mean-value formula (Apostol 1967, p. ...
The harmonic conjugate to a given function u(x,y) is a function v(x,y) such that f(x,y)=u(x,y)+iv(x,y) is complex differentiable (i.e., satisfies the Cauchy-Riemann ...
Let 1/p+1/q=1 (1) with p, q>1. Then Hölder's inequality for integrals states that int_a^b|f(x)g(x)|dx<=[int_a^b|f(x)|^pdx]^(1/p)[int_a^b|g(x)|^qdx]^(1/q), (2) with equality ...
The Lorentzian function is the singly peaked function given by L(x)=1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2), (1) where x_0 is the center and Gamma is a parameter specifying ...
A Taylor series remainder formula that gives after n terms of the series R_n=(f^((n+1))(x^*))/(n!p)(x-x^*)^(n+1-p)(x-x_0)^p for x^* in (x_0,x) and any p>0 (Blumenthal 1926, ...
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
If a_1>=a_2>=...>=a_n (1) b_1>=b_2>=...>=b_n, (2) then nsum_(k=1)^na_kb_k>=(sum_(k=1)^na_k)(sum_(k=1)^nb_k). (3) This is true for any distribution.
A complete metric space is a metric space in which every Cauchy sequence is convergent. Examples include the real numbers with the usual metric, the complex numbers, ...
...